Improved Bayesian regularisation using neural networks based on feature selection for software defect prediction
by R. Jayanthi; M. Lilly Florence
International Journal of Computer Applications in Technology (IJCAT), Vol. 60, No. 3, 2019

Abstract: Demand for software-based applications has grown drastically in various real-time applications. However, software testing schemes have been developed which include manual and automatic testing. Manual testing requires human effort and chances of error may still affect the quality of software. To overcome this issue, automatic software testing techniques based on machine learning techniques have been developed. In this work, we focus on the machine learning scheme for early prediction of software defects using Levenberg-Marquardt algorithm (LM), Back Propagation (BP) and Bayesian Regularisation (BR) techniques. Bayesian regularisation achieves better performance in terms of bug prediction. However, this performance can be enhanced further. Hence, we developed a novel approach for attribute selection-based feature selection technique to improve the performance of BR classification. An extensive study is carried out with the PROMISE repository where we considered KC1 and JM1 datasets. Experimental study shows that the proposed approach achieves better performance in predicting the defects in software.

Online publication date: Tue, 25-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com