Effective and efficient distributed management of big clinical data: a framework Online publication date: Fri, 28-Jun-2019
by Alfredo Cuzzocrea; Giorgio Mario Grasso; Massimiliano Nolich
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 11, No. 3, 2019
Abstract: Managing big data in distributed environments is a critical research challenge that has driven the attention from the community. In this context, there are several issues to be faced-off, including: 1) dealing with massive and heterogeneous data; 2) inconsistency problems; 3) query optimisation bottlenecks, and so forth. Clinical data represent a vibrant case of big data, due to both practical as well as methodological challenges exposed by such data. Following these considerations, in this paper we present an architecture for the storage, exchange and use of health data for administrative and epidemiological purposes, which focuses on the patient, who in a safe and easy way can make use of their data for therapeutic and research purposes. The proposed architecture would bring benefits both to patients, giving them the desired centrality in the care process, and to health administration, which could exploit the same infrastructure for better addressing health policies.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com