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Abstract: This contribution investigates the container throughput flow in a 
multi-port gateway system: Barcelona-Tarragona-Valencia (BTV). First, the 
paper examines the recent dynamics of the total and transhipment flow showing 
a relevant shifting of traffic share from Barcelona to Valencia. A novel model 
based on a two-state Markov model in conjunction with a Monte Carlo 
experiments is implemented to estimate the predictions of annual growth in 
container throughput. Verification tests show how the predictions are 
reasonably good with error metrics similar to other methods based on time-
series analysis (trend projections and ARIMA). The strength of the method 
relies in the statistical nature of the predictions provided (i.e., mean and data 
dispersion). The method is considered suitable for short-term forecasting. The 
practical application of the method considers separately the import/export and 
transhipment container throughput, revealing a different dynamics in both 
container flows. 
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1 Introduction 

In recent years, predictions of port freight have received increasing attention in ports 
management and transport logistics. Two different analytical approaches are used to 
predict port traffic: causal methods and time-series methods. Causal methods involve a 
high range of geographical and economic variables (for instance, gross domestic product 
or industrial production projections) for the port traffic forecast (Chou et al., 2008; Lättilä 
and Hilmola, 2012; Patil and Sahu, 2016). In contrast, time-series prediction methods are 
based on the projection of a past pattern into the future (Peng and Wu, 2009; Zhang et al., 
2013; Twrdy and Batista, 2016). In general, the literature review suggests that time-series 
analysis methods are performed for short and medium term predictions (less than five 
years) while for long-term predictions causal methods seem more appropriate (Indra  
et al., 2015). However, some authors use both time-series projections and causal variables 
for short-term projections (Chou et al., 2008). A third approach of forecasting methods is 
based on qualitative techniques, where the predictions rely on expert human judgment. 
These methods are based on iterative strategies, preventing an individual dominant factor 
(for instance the Delphi method). They are suitable when data are particularly scarce and 
may be quite effective for long-range forecasting (Indra et al., 2015). Complementing 
qualitative methods, hybrid techniques have been developed, including qualitative and 
analytical analyses with a good level of prediction accuracy (e.g., Duru et al., 2012;  
de Lange et al., 2012). In the main, as noted by Twrdy and Batista (2016) or Peng and 
Chou (2009), there is not a clear best method for realistic predictions in container 
throughput. Uncertainty of container flow predictions is related with regional and global 
economic evolution, trends in world maritime transport, the limitations of mathematical 
models, or the private-sector economic strategies of terminal operators and shipping 
lines, among other factors. Despite the uncertainty of the forecasting models, their results 
in terms of freight demand are used for port planning and development (see examples in 
Indra et al., 2015). 

Focusing on prediction methods based on time-series, some of the most commonly 
used are trend projection models, Grey theory based models and the Box-Jenkins models. 
These models have been compared in port traffic forecasting (e.g., Peng and Chou, 2009; 
Twrdy and Batista, 2016; Indra et al., 2015). Regression or trend projection models are 
the classical models where a polynomial regression is fitted according to the observed 
data. Grey models are based on Grey system theory (Deng, 1989), which has the ability 
to describe systems with unknown parameters. From the simplest point of view, Grey 
system based predictions can be viewed as curve fitting approaches (Kayacan et al., 
2010). Box-Jenkins based predictions apply a systematic method based on three stages: to 
identify the appropriate model, to develop a parameter estimation and a final checking to 
test the suitability of the model. A very widely used model based on the Box-Jenkins 
approach is the auto-regressive integrated moving average (ARIMA) model described in 
Box et al. (2008). 

In recent years Mediterranean ports have been the focus of intensive investigation 
(e.g., Gouvernal et al., 2005; Medda and Carbonaro, 2007; Notteboom, 2010, Twrdy and 
Batista, 2016). The geographical location of the Mediterranean Sea, within the East-West 
maritime traffic via the Suez Canal, prompted the development of hub ports and  
multi-port gateways capturing traffic heading towards the north of Europe (Notteboom 
and de Langen, 2015). Focused on container throughput, an alternative to individual port 
analyses led to the concept of multi-port gateway regions. In this case, under criteria such 
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as similar hinterland, competitive relations among ports or the calling patterns of the 
shipping lines, the ports are grouped together under a regional geographic denomination 
(Notteboom, 1997, 2010). The definition of multi-port gateway systems makes it possible 
to explore and compare the regional dynamics, intra-port competition, historical trends, 
predictions and developments of the container throughput. One of these multi-port 
gateway regions is formed by the southern European system of the ports of  
Barcelona-Tarragona-Valencia (BTV), also called ‘Spanish med range’. BTV container 
throughput was ranked in fourth position in the European container port system by 
Notteboom (2010) using data from 2008. The BTV inland corridor extends to the Madrid 
area and the South of France, with a logistic core region complementing a highly 
diversified industrial activity (Figure 1). Initiatives from the port authorities have been 
oriented towards developing inland terminals to penetrate into regional markets  
(Van den Berg and De Langen, 2011; Van den Berg et al., 2012). Barcelona and Valencia 
are among the largest Mediterranean ports, with relatively well-balanced transhipment 
and import-export activities (for instance, the transhipment activity was 38.8% and 43.9% 
in Barcelona and Valencia respectively during 2008). 

Figure 1 BTV geographical location (see online version for colours) 

 

Notes: Red points are the BTV port locations: B (Barcelona), T (Tarragona) and  
V (Valencia). Inland corridors are shown by green arrows and the BTV logistic 
core region is coloured in yellow. 

Source: Notteboom (2010) and Van den Berg et al. (2013) 

The objective of this contribution is to implement and analyse the results provided by a 
statistical method for container throughput. From a methodological point of view, we 
present a new methodology that conjugates the Markov chain and the Monte Carlo 
simulations in the framework of methods based on time-series analysis. The method is  
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applied in the container throughput development of the BTV multi-port gateway system. 
Thus, as a first step, the investigation examines the container dynamics of the BTV 
system at regional scale. In consequence, the practical view developed in this 
contribution supports the ‘multi-port gateway regions’ as a unit of analysis in the 
European container port system introduced by Notteboom (2010). Despite the relevance 
of the traffic share of Algeciras bay port in the Spanish system, this is not included in the 
analysis because it focuses on transhipment activity and it does not share the same 
hinterland (Notteboom’s criteria). 

This contribution is organised as follows: after the Introduction (Section 1), a 
description of the BTV port system in terms of container throughput is presented in 
Section 2. Section 3 describes the prediction model from a methodological point of view. 
Then, Section 4 shows the results of the application of the method at the BTV port 
system. A set of verification tests with historical data and a comparison with other 
investigations and state-of-the-art methods are presented in Section 5. A discussion of the 
results obtained is presented in Section 6. Finally, the main conclusions and future works 
are highlighted (Section 7). 

2 BTV port system description 

In terms of container flow, the BTV multi-port system feeds from the east–west 
Mediterranean route in the framework of container transhipment and import/export 
activity from its hinterland. The main hinterland served by BTV covers Spain and the 
south of France. In the European context, the BTV multi-port system has benefited from 
an extension of its hinterland with the advantage of offering a lower transit time in 
comparison to northern range ports to accommodate Far East cargo flows (Notteboom, 
2010). A critical point of the BTV multi-port system is the difficulty in establishing rail 
shuttles to connect to North European areas due to the difference in rail gauge, which 
limits the expansion of logistic corridors (Gouvernal et al., 2005). 

The BTV container throughput increased from 70,874 TEU in 1973 to 6,670,298 
TEU in 2015 following the global trend towards containerisation [Figure 2(a)]. From an 
historical point of view, both Barcelona and Valencia covered the whole of the BTV 
container throughput with a similar traffic share. However, since 2006 a turning point in 
traffic flow in Barcelona has led to a noticeable increase of the traffic share at Valencia 
Port [Figure 2(b)]. Among other reasons for this, Valencia Port was selected in 2002 as a 
Mediterranean hub by the shipping company MSC, leading to a percentage of 
transhipment over 50% after 2009 (see the next paragraph). However, the traffic 
relationship between Barcelona and Valencia is more complex: the annual growth rate 
[Figure 2(c)] does not present a negative significant correlation (r = 0.81, p < 0.001 for 
the period 1973–2015). The level of concentration of the BTV multi-port system is 
evaluated following the Hirschman–Herfindahl index (HH) which is computed in 
equation (1). 
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where i to n is the number of ports in the port system. When HH approximates to 1, this 
means that the total traffic flow is dominated by one specific container port. On the other 
hand, when HH tends to 1/n the traffic flow is spread widely among the ports. Figure 2(d) 
shows HH computed for the BTV port system. From an historical point of view, the 
index HH has evolved from below 0.4 during the first year with data available (1973) to 
0.55 in 2015. This evolution was characterised by a first period, when the traffic share 
was controlled by Barcelona Port (late 1970s with HH > 0.5), followed by a relatively 
constant HH period (below 0.5) during the 1980, 1990 and 2000, where Barcelona and 
Valencia had a similar traffic share. In the last few years, the index HH has increased 
significantly due to the increasing leadership of Valencia in container throughput. 

Figure 2 (a) Historical container throughput for the BTV ports (b) Traffic share rate for BTV 
ports (c) Annual growth rate for Barcelona and Valencia (d) Hirschman-Herfindahl 
index (HH) (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

Source: Puertos del Estado (Spanish Port Agency) 

The transhipment of containers at terminals and the emergence of ‘hub’ ports induce the 
requirement to examine the BTV port system considering the import/export (or the 
transhipment) container throughput. Figure 3(a) shows the total container throughput 
flow and the import/export flow, and Figure 3(b) shows the percentage of the 
transhipment throughput for the BTV ports. During the period 2007–2015, a visual 
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inspection shows a relationship between the increasing percentage of transhipment in 
Valencia versus the decreasing percentage in Barcelona (+20% versus –25% 
respectively). The import/export container throughput shows how this activity has 
remained approximately constant over time in the BTV system. The exceptional increase 
of container throughput during 2006, 2007 and 2008 at Valencia Port is mainly associated 
with the transhipment activity (see Figure 3). Considering that the noticeable decrease of 
container flow occurred during 2008 Barcelona relates to transhipment activity, it seems 
feasible to assume that Valencia Port captured part of the transhipment activity from 
Barcelona Port. Figure 3(b) confirms this trend: an increase of the percentage of the 
transhipment in Valencia fits with the decrease of the transhipment activity in Barcelona. 
Historically, Tarragona Port has been focussed on solid and liquid bulk associated with 
the petrochemical industry in its immediate area of influence. Recently, DPW established 
a new container terminal with a slight increase of the container throughput (Figure 2). 

Although total container throughput information is available from 1973, transhipment 
information has only been recorded since 2005. In consequence, only 11 years of data are 
used for the container throughput predictions. The container throughput data are obtained 
from the Spanish Port Agency (Puertos del Estado). 

3 Methodology 

The model used to investigate the container throughput forecasting is based on a two-
state Markov model chain combined with a Monte Carlo experiments model. The simple 
two-state Markov model, applied recently by Twrdy and Batisita (2016) in container 
throughput analysis, provides information about the dynamics of a port-system container 
flow considering that the next state of annual growth depends only on the current state 
and not on the sequence of events that preceded it (memorylessness or Markov property). 
This means that given a positive integer n and possible states of annual growth rate s1, …, 
sn+1 as random variable (X), it occurs that: 

1 1 1 1 2 2 1 1, , ,n n n n n n n nP X s X s X s X s P X s X s…  (2) 

The two-state Markov model chain for the BTV system is presented in Figure 4, where 
the probability for the sequence of annual growth is obtained from the total and 
transhipment time–series [see Figure 3(a)]. In this case, the basic model only considers 
two time-independent states: positive or negative growth. The associated transition 
matrix, which provides the shift probabilities between both states, is given by: 

1
1

p p
P

q q
 (3) 

where p is the probability of being positive next year if the current year is positive, and q 
the probability of being negative the next year if the current year is negative in terms of 
annual growth. According to the probabilistic data shown in Figure 4, the transition 
matrix for the total and transhipment container throughput are: 

0.67 0.33 0.86 0.14
;

0.33 0.67 0.50 0.50total transhipmentP P  (4) 
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From the total container flow transition matrix, we can observe how a positive growth in 
the previous year leads to a 67% probability of there being positive growth next year and 
33% of being negative the next year. On the other hand, after negative growth for the past 
year, the probability of being positive is 67% and the probability of being negative is 
33% in the next year (total container flow). The values for the transhipment component 
are different from the total component flow, indicating a different dynamic between the 
import/export and the transhipment container flow. 

Figure 3 (a) Total (continuous line) and import/export (dashed line) container throughput for the 
BTV ports (b) Percentage of the transhipment from the total container throughput  
(see online version for colours) 

� �

 
(a)     (b) 

Notes: In both figures blue corresponds to Barcelona data, red corresponds to Valencia 
data and green corresponds to Tarragona data. 

Figure 4 Two-state Markov chain for the sequence of growth rate, on the left (a) for the total 
container throughput, on the right (b) for the transhipment container throughput  
(see online version for colours) 

� �

 
(a)    (b) 

Note: Numbers indicate probabilities of occurrence of the next year according to the sign 
of the container growth rate of the previous year. 

A step forward with the Markov chain model is to run random simulations following the 
Monte Carlo method. This method is widely applied for forecasting procedures in other 
disciplines and provides to the decision-maker with a set of possible outcomes and 
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statistics that will occur in the future. In our case, the purpose of the Monte Carlo 
experiments is to generate annual growth predictions based on past container throughput 
patterns (given by a two-state Markov chain) and then provide statistics for container 
throughput predictions for the short-term (i.e. 1–3 years). The random nature of the 
system has been included through a uniform values generator. Combining the 
probabilities derived from the Markov Chain model, a number of simulations are 
performed representing different prediction scenarios. The stochastic behaviour in the 
model was implemented in such a manner that each prediction assumes the two-state 
Markov Chain model pattern shown in Figure 4. Once the algorithm has determined the 
sign of the annual growth (positive or negative), the value of the annual growth is 
computed with a random value, assuming that they follow a normal distribution with a 
mean and standard deviation. The mean and the standard deviation have been obtained 
from the past positive and negative growth separately. The Monte Carlo model has been 
applied with 20,000 simulations for annual growth forecast scenarios. 

Two well-known methodologies are selected to be applied at the BTV multi-port 
system in order to compare them with the error metrics obtained from the statistical 
method. These methodologies are based on a regression model with a single independent 
variable and ARIMA; both of them are appropriate for short-term forecasting (e.g. Peng 
and Chu, 2009; Indra et al., 2015; Twrdy and Batista, 2016). The simple regression 
model is formulated as: 

0 1tY t  (5) 

where 0 is the intercept and 1 is the slope of the regression line over time t. Both 
coefficients are estimated from data using least square method. The ARIMA model is 
generally denoted as ARIMA (p, d, q) where p, d and q are non-negative integers which 
define the order of the autoregressive model,  the degree of the differencing and the order 
of the moving-average model respectively. Particularisations of the formulation of 
ARIMA and its identification procedure parameters are found in Box et al. (2008). 

4 Results 

The descriptive statistics of the 2016 prediction for the total and transhipment container 
flow are presented in Table 1. The averaged values (µ) for total and transhipment flows at 
BTV are 6,927,681 TEU and 3,112,568 TEU with a standard deviation (σ) of 510,672 
TEU and 344,093 TEU respectively. As a preliminary verification test, the latest data 
(June 2016) show a first semester growth of about 4.2% at BTV, which would result in a 
total TEU flow of nearly 7 million TEUs during 2016, closer to the total flow predicted. 
The statistical nature of the method makes it possible to obtain additional parameters 
such as the kurtosis or the skewness. The kurtosis in both cases is  below 3, which means 
that, in the resultant distribution of the predicted traffic, the weight of the tails relative to 
the rest of the distribution has no noticeable importance (i.e., the relative noticeable 
concentration of data near the mean). Alternatively, the skewness is small, which means 
that the solutions provided by the Monte Carlo method have no relevant asymmetry. 
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Figure 5 Predictions of the container throughput using Monte Carlo experiments in conjunction 
with the Markov chain model, (a) the total container throughput (b) for the transhipment 
container flow (see online version for colours) 

� �

 
(a)     (b) 

Notes: Black bold line is the total container throughput in the BTV systems for the past 
years. Magenta bold line represents the averaged prediction simulations, green 
lines represent the range µ ± σ and the alternative single line colours the different 
prediction results. 

Figure 5 shows the time–series for a three-year predictions sequence jointly with the past 
traffic data. The mean value and the µ±σ time–series are also shown. The results for both 
time–series (total and transhipment flows) show a clear positive tendency predicted in 
both cases consistent with the past container flow pattern. The results also reveal an 
increase of the prediction range when the forecasting step (i.e. year predicted) increases; 
this means that the standard deviation increases when the prediction horizon is increased. 
This is also observed in the range of values of the histogram distribution for three-year 
prediction for total container and transhipment flows (Figure 6). The histogram classes 
(15) are established considering the Sturges rule (Sturges, 1926). For the first year’s 
prediction of the total container flow (i.e., 2016; Figure 6.a), the histogram shows a 
relatively ‘non-flattened’ and symmetrical distribution consistent with the kurtosis and 
the skewness values. This pattern is similar in both flows (i.e.. total and transhipment 
container flow) and for the sequence of predictions for 2017 and 2018. According to the 
visual inspection and the statistical parameters, the predictions seem to follow a normal 
distribution. For instance, for the 2017 and 2018 predictions, the kurtosis is 2.50 and 2.76 
respectively (values near to the 2016 prediction), which are near to the expected values 
for a normal distribution pattern (i.e., 3). If the predicted container flow follows a normal 
distribution, it means that 68% of the predictions are in the range µ±σ (green lines in 
Figure 5), and 95% of the predictions are in the range µ±2•σ. This information, jointly 
with the information shown in Figure 6 and Table 1, may be relevant for a decision-
making framework because the method provides an averaged prediction and additional 
information on the uncertainty of the prediction. For instance, the cumulative distribution 
function shown in Figure 6 determines the probability of being higher/lower at a certain 
traffic flow. This may be relevant for investment planning or handling the assignment of 
terminals operators in the next year’s strategies. 
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Figure 6 Histogram (in blue) and cumulative probability function (in red) for three-year 
predictions (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

 
(e)     (f) 

Notes: Predictions 2016–2018. In the left column the results for the total container flow 
at BTV (a, c, e). In the right column the results only considering the transhipment 
flow at BTV (b, d, f). 
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Table 1 Descriptive statistics for the 2016 container prediction at the BTV system 

 Total container flow Transhipment container flow 

Total of prediction simulations 20,000 20,000 
Mean (µ) 6,927,681 TEU 3,112,568 TEU 
Standard deviation (σ) 510,672 TEU 344,093 TEU 
Median 6,997,378 TEU 3,137,626 TEU 
Kurtosis 2.10 2.40 
Skewness –0.12 –0.04 
Minimum prediction 5,531,098 TEU 2,081,986 TEU 
Maximum prediction 8,426,835 TEU 4,258,751 TEU 

Note: Both total and transhipment flows are shown. 

5 Validation test and comparison with other methods 

In this section, a set of numerical tests have been carried out with the purpose of 
examining the skill assessment of the model. The first test is performed by comparing 
past year predictions with their corresponding real time-series. For instance, the 
prediction for 2015 has been carried out using 2005–2014 container flow information. 
Table 2 shows the ‘first-year’ prediction during 3 consecutive years. The container traffic 
predicted in 2015 is 6,714,619 TEU, which is close to the real traffic that was 6,670,284 
TEUs. In this case, the absolute error was 0.67%. The results for 2014 prediction show 
similar results: the absolute error is 2.01%. In both cases, the solution is in the range  
µ ± σ predicted according to the standard deviation shown in Table 2. However, the error 
in the prediction for the year 2013, increases reaching an absolute error of 13.96%. This 
is due to the noticeable decrease of container activity during 2013, opposed to the 
historical positive tendency. This prediction test confirms the impossibility of the 
statistical method capturing turning points from a global tendency in a similar way to 
other methods based on time–series analysis (Indra et al., 2015). 

A complementary validation is carried out by analysing the three-year container 
forecast (2014, 2015 and 2016) using 2013 as the base year. The container flow value for 
2016 has been extrapolated linearly from the accumulated traffic data at August 2016 
(last data available). In this case, the skill assessment of the model has been computed 
using the following error metrics: Root Mean Square Error (RMSE), the Mean Absolute 
Error (MAE) and the Mean Absolute Percent Error (MAPE): 

1
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Y Y
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 (8) 

where t̂Y  is the measured container throughput and Yt is the predicted container 
throughput over time t. The container throughput results for the three-year predictions are 
shown in Table 3, jointly with the evolution of the standard deviation and error metrics 
presented previously. The container flow prediction has a reasonable agreement for the 
three years: in all cases the real container flow falls in the range µ ± σ with a MAPE of 
2.2%. The MAE and RMSE are below 160,000 TEUs, approximately 2.5% of the total 
flow. In this sense, the results shown in Table 2 and 3 reveal a percent error in similar 
terms to the results shown in Peng and Chu (2009), which compare six univariate models 
for container forecasting applied at Taiwan’s three major ports. Peng and Chu (2009) 
obtained a MAPE with a range of 2.15% (classical decomposition method) and 7.10% 
(Hybrid Grey method); however, the comparison with our results is not fully conclusive 
because Peng and Chu (2009) used very short-term predictions (i.e., monthly) with a 
consequent difference in the volatility dynamics such as the seasonal pattern. Using year 
predictions, Twrdy and Batista (2016) applied the quadratic trend model with a mean 
absolute percent error between 2.9% and 5.5%; this means similar error metrics to the 
statistical method presented in this contribution. Other examples of port throughput 
predictions with similar error metrics are found in Zhang et al. (2013), Patil and Sahu 
(2016) and Hui et al. (2004). However, as mentioned previously, the standard deviation 
(STD) shown in Table 3 increases in relation to the year predicted. This suggests the 
suitability of the method for short-term forecasting (i.e., 1–3 years): longer predictions 
would increase the standard deviation (larger dispersion of the simulations), approaching 
the magnitude of the mean. The effect on the quality of the solution to the year horizon 
prediction is considered as a future work. Also, the length of the historical years used to 
compute the transient matrix, which is the core of the method presented here, is an issue 
to be considered in further investigations. 
Table 2 Verification test results: real and prediction of the container traffic per year 

Year Total container 
traffic (in TEU) 

Total container traffic 
predicted (in TEU) 

Standard deviation 
predicted (in TEU) 

Absolute error 
(in %) 

2015  6,670,284 6,714,619 524,913 0.67 
2014  6,484,421 6,354,124 528,314 2.01 
2013 6,193,863 7,058,625 304,678 13.96 

The experiment using as a base year 2013 is replicated using the simple linear regression 
model and the non-seasonal ARIMA models: ARIMA (0, 1, 0), ARIMA (1, 1, 0) and 
ARIMA (0, 1, 1). One order of differencing (d = 1) is chosen due to the  
non-stationary pattern identified in the original time-series (Box et al., 2008). ARIMA  
(0, 1, 0) represents a random walk model and is formulated as: 

1t tY μ Y  (9) 

where the constant term (µ) is the average period-to-period change in the data (i.e., long 
term drift). The constant term is included because the model selected has one order of 
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differencing and the time–series has a non-zero average. ARIMA (1, 1, 0) represents the 
differenced first order autoregressive model: 

1 1 2i i i iY μ Y θ Y Y  (10) 

where θ is the slope coefficient. ARIMA (0, 1, 1) is a simple exponential smoothing with 
one order of differencing: 

1 1i i iY μ Y e  (11) 

Table 3 Three-year prediction from 2013 as the base year 

Base year 2013 

Year prediction Mean (in TEU) STD (in TEU) 

2016 6,801,580 1,026,988 
7,025,605 

2015 6,573,368 795,955 
6,670,284 

2014 6,354,124 528,314 
6,484,421 

MAE (in TEU) 150,412 
MAPE (%) 2.22 
RMSE (in TEU) 159,747 

Notes: In italics the real container traffic. The value for 2016 has been extrapolated 
linearly from the accumulated traffic at August 2016 (last data available). 

Table 4 Error metrics of different prediction methods for the 2013 base year experiment 

 Linear regression ARIMA(0, 1, 0) ARIMA(1, 1, 0) ARIMA(0, 1, 1) 

MAE (in TEU) 408,057 107,012 120,747 318,883 
MAPE (%) 6.10 1.57 1.77 4.77 
RMSE (in TEU) 411,958 123,540 137,142 324,803 

Notes: The MAE, MAPE and RMSE for the statistical method based on a two-state 
Markov model in conjunction with Mote Carlo experiments are shown in Table 3. 

Table 4 shows the error metrics for the simple regression method and the ARIMA models 
for the forecasting experiment in which 2013 was taken as the base year. So, these results 
are compared with the error metrics shown in Table 3. The linear regression model shows 
larger errors than the statistical method. For instance, MAPE is 2.22% for the statistical 
method against 6.10% for the linear regression method. Compared with ARIMA models, 
the statistical method shows similar error metrics. For instance, differences of ~20.000 
TEU are obtained when comparing the RMSE obtained from ARIMA(0,1,0) or 
ARIMA(1,1,0) and the statistical method (123,540 TEU, 137,142 TEU and 159,747 TEU 
respectively). Although there is not a best forecasting model (Peng and Chu, 2009; 
Twrdy and Batista, 2016), the statistical method presented here showed a reasonable 
agreement with the container data flow, with similar error metrics to other state-of-the-art 
methods. However, further research and more inter-comparison exercises are suggested 



   

 

   

   
 

   

   

 

   

    A statistical forecasting model applied to container 329    
 

    
 
 

   

   
 

   

   

 

   

       
 

to assess the reliability of the statistical method based on two-state Markov model with 
the conjunction of Monte Carlo experiments. 

6 Discussion 

This investigation has shown the rapid increase of the container throughput during the 
period 2000–2015 for the BTV system. The shipping and terminal companies’ decisions 
have affected the container traffic share among the ports of the BTV multi-port system: 
Valencia nowadays has a relevant role in the world transhipment market and Barcelona is 
specialised in the import/export market, with a good geographical position to increase its 
hinterland towards the north (Van den Berg et al., 2012). This is confirmed by the 
analysis shown in the previous sections, where a significant correlation in the 
transhipment flows between Valencia and Barcelona was found. The position of marine 
routes and the relevant production region makes it valid to consider the BTV multi-port 
system as being in an optimal position in the European and Mediterranean markets. 

Port competitiveness in the BTV multi-port system will be relevant in the future with 
the increase of north–south rail network connection or new patterns in world maritime 
traffic. In this sense, port traffic forecasting models are nowadays the focus of 
investigation: planners and port managers seek the ability of forecast models for 
appropriate decision-making. The mentioned relevance of private agents in the intra-port 
traffic share limits the prediction skill for the container flow for the BTV ports, but 
considering them as a unique entity, the predictions present good results according to the 
verification tests. This fact supports the multi-gate system definition mentioned 
previously (Notteboom, 2010). 

The statistical method, based on two-state Markov model with the conjunction of 
Monte Carlo experiments, presented in this contribution captures the trend, but presents 
difficulties in predicting turning points or outliers. This disadvantage is common in other 
forecasting methods based on time–series analysis (Indra et al., 2015). This is because 
these methods are based on the principle by which the pattern of the past is reproduced in 
the future. For instance, the turning point for year 2013 was not captured by the statistical 
model according to the verification tests shown previously. Also, the evolution of the 
transhipment market is highly influenced by shipping companies’ decisions (for instance, 
the selection of Valencia as a hub port by MSC), which may represent a disruption that 
the forecasting model does not capture. These disadvantages are common in other  
time-series-based models where the past behaviour is maintained in the future  
(e.g., ARIMA models). However, they are a competitive tool for new infrastructure 
construction and maintenance, and for operation management, such as the assignment 
and acquisition of handling equipment (Indra et al., 2015). 

One of the advantages of the statistical model presented here is that the set of 
forecasting results is provided in terms of statistical outcomes (for instance, histograms or 
cumulative plots). In this sense, the range of probability of traffic growth provided by the 
statistical method suggests inputs for a final decision to be taken by port planners and 
managers. Therefore, qualitative techniques that rely on the expertise of human judgment 
may complement the final estimation (de Lange et al., 2012; Duru et al., 2012). The 
qualitative methods are also suitable when ambiguous or incomplete data are available, or 
disruptive factors are present. In consequence, the statistical method presented in this 
contribution is a good complement for qualitative forecasting methods (e.g. the Delphi 
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method) due to the statistical outputs. The qualitative methods have been applied 
previously in maritime volume forecasting by Duru et al. (2012), de Lange et al. (2012) 
and Rashed et al. (2015), highlighting the ability of these methods to predict shipping 
industry trends and capture turning points in the time–series. 

A Markov Chain is a stochastic process, but it differs from a general stochastic 
process in that a Markov Chain must be ‘memoryless’. This means that the transition 
from one state to another does not depend on how the variable (in our case growth) 
arrived at this present state (Markov property). In the container growth rate, the Markov 
property may be assumed according to the time–series data; in this case, the container 
predictions are based on the transition matrix P as a unique source of information. The 
integration of the past information through the transition matrix led to a high dependence 
of the method on a relatively small amount of information. In consequence, seasonal or 
cyclic patterns are not included in the statistical method, by contrast with to classical 
decomposition methods or Seasonal-ARIMA models (see the comparative analysis in 
Peng and Chu, 2009). However, according to our results, the application of the statistical 
model may provide feasible solutions with a relatively limited set of observations. This 
may differ from other time–series methods; for instance, ARIMA models suggest more 
than 50 observations (Indra et al., 2015). The number of observations used in our 
predictions was 10 years of data. This length is similar to other traffic predictions based 
on time–series analysis (for instance, Farhan and Ong, 2016). Although container 
information in the BTV multi-port system is available from 1973, the 1970s, ‘80s and 
‘90s decades haves not been included in the analysis because these include the boom of 
the containerisation boom; in this case an overestimation of the total container prediction 
was observed if these decades were considered (results not shown). 

Figure 7 Flow predictions for the total container throughput for (a) Barcelona and (b) Valencia 
ports (see online version for colours) 

� �

 
(a)     (b) 

Notes: Magenta bold line represents the averaged prediction simulations, green lines 
represent the range µ ± σ and the alternative single line colours the different 
prediction results. 

The application of the statistical method including the transhipment flow leads to 
predictions with more dispersion due to the volatility of the transhipment market. An 
example is the application of the statistical method for Barcelona and Valencia flows 
separately (Figure 7). The predicted container flows show how the deviation of 
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transhipment flows from Barcelona to Valencia (which occurred mainly during 2008 as 
noted previously) has a relevant impact on the Barcelona flow prediction. A Zero growth 
predicted in this port is likely due to the turning point that occurred in 2008 [see  
Figure 3(a)]; a positive tendency would be more reliable according to the positive annual 
growth of 2014 and 2015 after the transhipment flow has been ‘readjusted’. Also, the 
effect of the establishment of the DPW terminal at Tarragona Port may be another source 
of disruption in future predictions in the event of a significant increase of the container 
flow at this terminal. 

7 Conclusions and future works 

This contribution has addressed the dynamics of the container flow in the multi-port 
gateway system of Barcelona-Tarragona-Valencia. The examination of the container 
dynamics in this port-system has revealed a significant evolution of the relative weight 
among the three ports. The statistical method implemented focuses on annual growth of 
container forecast and is based on two-state Markov chain and Monte Carlo experiments. 
The method has an acceptable level of agreement with real data according to verification 
tests. The comparison with other state-of-the-art methods reveals the suitability of the 
method for port traffic forecasting. One of the advantages of the method in comparison to 
other univariate methods is to provide statistical outcomes (e.g., histogram, cumulative 
probability function, etc.). The probabilistic approach introduces an alternative insight in 
comparison to conventional quantitative methods and can also be a complement to 
qualitative methods. According to our results, the more volatile transhipment market 
leads to a source of disruption in the container throughput predictions. Several future 
works are planned to analyse the application of the statistical method in other port or 
multi-port systems, in additional traffic contexts (e.g., transhipment oriented ports), or 
using different number of observations. 

Similar to the neural network or Box-Jenkins methods, the reliability of the models 
decreases with the increase of the prediction horizon (Lam et al., 2004; Box et al., 2008). 
In this sense, the sensitivity of the statistical method in terms of the number of 
observations (meanings its influence on the transition matrix) and the application at 
different port systems is undoubtedly a further analysis to be addressed. The statistical 
method is based on a simple two-state Markov-chain but the application to more complex 
diagrams may be useful to capture complex patterns or port throughput correlations 
(similar to the negative correlation for the transhipment flow observed between 
Barcelona and Valencia). Finally, the normal distribution fitting assumed in the annual 
growth distribution must also be  discussed in future works using a longer period of 
container flow data. However, the fitting of other distributions in terms of annual growth 
(for instance, negative distribution) does not modify the methodology significantly. 
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