Efficient moving vehicle detection for intelligent traffic surveillance system using optimal probabilistic neural network
by J.A. Smitha; N. Rajkumar
International Journal of Business Intelligence and Data Mining (IJBIDM), Vol. 15, No. 1, 2019

Abstract: The vehicle detection system plays an essential role in the traffic video surveillance system. Video communication of these traffic cameras over real-world limited bandwidth networks can frequently suffer network congestion. The objective of this paper is to develop an effective method for moving vehicle detection problems that can find high quality solutions (with respect to detection accuracy) at a high convergence speed. To achieve this objective, we propose a method that hybridises the cuckoo search (CS) with Opposition-based learning (OBL), where OBL is improve the performance of the CS algorithm while optimising the weights of the standard PNN model. The proposed system mainly consists of two modules such as: 1) design novel OCS-PNN model; 2) moving vehicle detection using OCS-PNN model. The algorithm is tested on three standard video dataset. For instance, the proposed method achieved the maximum precision of 94%, F-measure of 94% and similarity of 94%.

Online publication date: Sat, 29-Jun-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Intelligence and Data Mining (IJBIDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com