New study of various target neutron yields from spallation reactions using a high-energy proton beam Online publication date: Wed, 17-Jul-2019
by Abdessamad Didi; Ahmed Dadouch; Mohamed Bencheikh; Otman Jaï; Otman El Hajjaji
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 13, No. 2, 2019
Abstract: The spallation target plays an important role in the construction of an accelerator-driven system. Its purpose is to generate a neutron flux produced by cascaded spallation reactions using heavy nuclei, the latter being bombarded by the high-intensity proton beam. In this study, we have examined several heavy materials, such as uranium, thorium, tungsten, tantalum, lead, bismuth and mercury. The aim of this is to optimise a high-intensity neutron flux to be useful in several fields of applications, such as medicine and transmutation of nuclear waste. In this paper, we have shown when the spallation target changes the neutron flux varies. For example, uranium and thorium two materials producing a very intense amount of neutrons followed by lead, tungsten, mercury and bismuth and lately tantalum. We found these results by the variation of the proton beams energy from 0.1 GeV to 3 GeV, then with the variation of the geometry. Finally, we validated this study with experimental and theoretical results.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com