New algorithms for inferring gene regulatory networks from time-series expression data on Apache Spark Online publication date: Fri, 19-Jul-2019
by Yasser Abduallah; Jason T.L. Wang
International Journal of Big Data Intelligence (IJBDI), Vol. 6, No. 3/4, 2019
Abstract: Gene regulatory networks (GRNs) are crucial to understand the inner workings of the cell and the complexity of gene interactions. Numerous algorithms have been developed to infer GRNs from gene expression data. As the number of identified genes increases and the complexity of their interactions is uncovered, gene networks become cumbersome to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data processing. Therefore, new approaches are needed to analyse copious amounts of experimental data from cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here we present two new algorithms for reverse engineering GRNs in a cloud environment. The algorithms, implemented in Spark, employ an information-theoretic approach to infer GRNs from time-series gene expression data. Experimental results show that one of our new algorithms is faster than, yet as accurate as, two existing cloud-based GRN inference methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com