Development of prediction model for forecasting rainfall in Western Australia using lagged climate indices Online publication date: Fri, 02-Aug-2019
by Farhana Islam; Monzur A. Imteaz
International Journal of Water (IJW), Vol. 13, No. 3, 2019
Abstract: The aim of the study was to develop a model to forecast autumn rainfall several months in advance for south-west division (SWD) of Western Australia (WA), by identifying and incorporating the relationship among major climate indices such as dipole mode index (DMI), southern oscillation index (SOI), ENSO Modoki index (EMI) and autumn rainfall. Eight rainfall stations from two regions of SWD were considered. Statistical analysis showed that DMI, SOI, Nino3.4, Nino3 and Nino4 have significant correlations with autumn rainfall for all these stations. On the other hand, EMI showed significant correlations for the stations in the north-coast region only. Meanwhile, DMI effect has been found stronger for all the stations compared to other climate indices. Several multiple regression analyses were conducted using lagged ENSO-DMI, lagged SOI-DMI and lagged EMI-DMI indices, and significant increase in the correlations between autumn rainfall and climate indices was observed. However, only statistically significant models were suggested.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Water (IJW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com