A new driving condition identification method for heavy duty vehicles based on HHMM
by Tianjun Zhu; Bin Li; Changfu Zong
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 26, No. 3/4, 2019

Abstract: Aiming to improve active safety of heavy duty vehicles, a new dynamic driving condition identification method is developed in this paper through incorporating Hierarchical Hidden Markov Models (HHMM) into the rollover warning system for heavy duty vehicles to assist the driver to be aware of the driving conditions. The corresponding data under typical driving conditions are first collected and then put into test with Student's t-test method and Grubbs's test method (T-G test method). The outliers filtered by T-G test from the data are detected and eliminated. K-Means algorithm, used to set up the rollover threshold value and Baum-Welch algorithm for optimising the proposed rollover warning model, are discussed in detail. Computer simulations under different driving conditions are carried out to verify the optimised HHMM. The simulation results demonstrate that the proposed driving condition identification method can effectively identify the driving status with a high accuracy under a variety of driving conditions and could be used for real-time rollover warning control.

Online publication date: Sun, 11-Aug-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com