Ammonia and hydrogen sulphide flux and dry deposition velocity estimates using vertical gradient method at a commercial beef cattle feedlot Online publication date: Fri, 23-Jun-2006
by Bok-Haeng Baek, Richard Todd, N. Andy Cole, Jacek A. Koziel
International Journal of Global Environmental Issues (IJGENVI), Vol. 6, No. 2/3, 2006
Abstract: Ammonia and hydrogen sulphide flux and dry deposition velocity were estimated using micrometeorological vertical gradient flux method at a commercial cattle feedyard of approximately 50,000 head of beef cattle and average 14.4 m²/head (150 ft²/head) stocking density. Ammonia-N and H2S-S loss had general diurnal patterns with the highest fluxes in daytime and lowest fluxes in nighttime that correlated to temperature changes and active evaporation process during daytime. The highest average deposition velocities also occurred during daytime with unstable atmospheric conditions and the lowest during nighttime with very stable conditions. There are exponential relationship between NH3-N flux and ambient temperature with R² = 0.57 for NH3 (NH3-N flux = – 1.46 + 7.96e0.077*Temperature) and R² = 0.22 for H2S-S (H2S-S flux = – 0.75 + 0.8e-0.013*Temperature).
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Environmental Issues (IJGENVI):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com