Facial expression recognition using geometric features and modified hidden Markov model
by Mayur Rahul; Narendra Kohli; Rashi Agarwal; Sanju Mishra
International Journal of Grid and Utility Computing (IJGUC), Vol. 10, No. 5, 2019

Abstract: This work proposes a geometric feature-based descriptor for efficient Facial Expression Recognition (FER) that can be used for better human-computer interaction. Although lots of research has been focused on descriptor-based FER still different problems have to be solved regarding noise, recognition rate, time and error rates. The Japanese Female Facial Expression (JAFFE) data sets help to make FER more reliable and efficient as pixels are distributed uniformly. The proposed system introduces novel geometric features to extract important features from the images and layered Hidden Markov Model (HMM) as a classifier. The layered HMM is used to recognised seven facial expressions i.e., anger, disgust, fear, joy, sadness, surprise and neutral. The proposed framework is compared with existing systems where the proposed framework proves its superiority with the recognition rate of 84.7% with the others 85%. Our proposed framework is also tested in terms of recognition rates, processing time and error rates and found its best accuracy with the other existing systems.

Online publication date: Tue, 03-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Grid and Utility Computing (IJGUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com