An algebra approach for nonlinear multivariable fed-batch bioprocess control Online publication date: Wed, 04-Sep-2019
by M. Cecilia Fernández; Maria Nadia Pantano; Santiago Rómoli; H. Daniel Patiño; Oscar Alberto Ortiz; Gustavo J.E. Scaglia
International Journal of Industrial and Systems Engineering (IJISE), Vol. 33, No. 1, 2019
Abstract: In this paper, a linear algebra-based controller design is proposed. This technique allows tracking, with minimum error, predefined optimal profiles in nonlinear and multivariable systems. To achieve this, control actions are obtained by solving a linear equation system. The controller parameters are selected with a Monte Carlo algorithm. The methodology is applied in a fed-batch penicillin production process, where the control action is the feed flow rate and the tracked profiles are the concentration of biomass, product and subtract inside the reactor. Different tests are shown to prove the good performance of the controller adding: parametric uncertainty and perturbations in the control action and in the initial conditions
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Industrial and Systems Engineering (IJISE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com