Supervisory control using fuzzy logic for fault ride-through capability of a hybrid system in grid supporting mode Online publication date: Mon, 16-Sep-2019
by Chayan Bhattacharjee; Binoy Krishna Roy
International Journal of Power and Energy Conversion (IJPEC), Vol. 10, No. 3, 2019
Abstract: This paper demonstrates a novel fuzzy-supervisory control algorithm for power extraction and management in a grid-tied low concentration photovoltaic (LCPV) system with battery energy storage system (BESS). The novelty of this paper lies in avoiding dump load (DL) at the dc link, to regulate dc link voltage (Vdc) under all conditions, with an increase in power dispatch. This increases system efficiency and lessen power extraction from BESS. The supervisory controller directs all converters and maintains power balance at the dc link. Enhanced reactive power (Q) support of the grid inverter during a grid fault is controlled by using the magnitude of grid voltage sag. This control prevents islanding of the dc micro-grid as per the Indian grid code. Variation in duty cycle of the converter for optimum power extraction from LCPV generator is done by using fuzzy logic. Power references of converters depend on different operational modes and grid condition.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Power and Energy Conversion (IJPEC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com