Research on borrower's credit classification of P2P network loan based on LightGBM algorithm
by Sen Zhang; Yuping Hu; Zhuoyi Tan
International Journal of Embedded Systems (IJES), Vol. 11, No. 5, 2019

Abstract: The credit classification of a borrower is the main method to effectively reduce the credit risk of P2P online loans. In this paper, LightGBM algorithm has the advantage in the high accuracy of data classification. Feature extraction, selection and reconstruction of the original data are performed by feature engineering. The One hot Encoding technology is used to re-encode the discretised feature indicators. Z-score data normalisation normalises the characteristics of continuous variables. Re-sort all feature indicators by contribution and perform PCA dimensionality reduction, and filter out effective feature indicators for training and testing. Finally, the problem of imbalance of samples and optimisation of model parameters is solved by ten-fold cross-validation. Result of simulation experiment shows that the LightGBM model has good stability, good fitting ability and high classification prediction accuracy.

Online publication date: Tue, 24-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com