Super-twisting algorithm-based integral sliding mode control with composite nonlinear feedback control for magnetic levitation system Online publication date: Tue, 01-Oct-2019
by Avadh Pati; Richa Negi
International Journal of Automation and Control (IJAAC), Vol. 13, No. 6, 2019
Abstract: The paper aims to discuss the issues of actuator saturation and external disturbance in the magnetic levitation (maglev) system. The proposed technique is composed of composite nonlinear feedback (CNF) and super-twisting algorithm (STA)-based integral sliding mode (ISM) control to tackle the problem of actuator saturation and external disturbances simultaneously. The composite nonlinear feedback scheme comprises of linear feedback law which provides stability and fast response whereas the nonlinear feedback law takes care of input saturation and reduces the overshoot. The super-twisting algorithm (STA)-based integral sliding mode (ISM) controller is designed for disturbance rejection. A super-twisting algorithm-based approach is applied on ISM scheme to eliminate the chattering effect and make it continuous in nature for its direct implementation to the physical maglev system. The designed scheme is successfully tested on real-time feedback instruments model of the maglev system.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com