Multi-response optimisation of machining aluminium-6061 under eco-friendly electrostatic minimum quantity lubrication environment
by Muhammad Jamil; Aqib Mashood Khan; Ning He; Liang Li; Wei Zhao; Shoaib Sarfraz
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 21, No. 5/6, 2019

Abstract: The emerging grave consequences of conventional coolants on health, ecology and product quality, have pushed the scientific research to explore eco-friendly lubrication technique. Electrostatic minimum quantity lubrication (EMQL) has been underscored as a burgeoning technology to cut-down bete noire impacts in machining. This research confers the adoption of a negatively charged cold mist of air-castor oil employed in turning of aluminium-6061T6 material by varying the cutting conditions, as per experimental designed through response surface methodology (RSM). For comprehensive sagacity, a range of cutting speed, feed, depth of cut and EMQL-flow rate were considered. Material removal rate, tool life, surface roughness and power consumption of machine tool were adopted as performance measures. To satisfy multi-criterion simultaneously, RSM-based grey relational analysis (GRA) was employed for multi-objective optimisation. Highest proportion of grey relational grade (GRG) as a single desideratum response function, provided a trade-off between performance measures with 15.56% improvement in GRG.

Online publication date: Mon, 21-Oct-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com