A locally adaptive edge preserving filter for denoising of low dose CT using multi-level fuzzy reasoning concept Online publication date: Wed, 23-Oct-2019
by Priyank Saxena; R. Sukesh Kumar
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 31, No. 4, 2019
Abstract: To reduce the radiation exposure, low dose CT (LDCT) imaging has been particularly used in modern medical practice. The fundamental difficulty for LDCT lies in its heavy noise pollution in the projection data which leads to the deterioration of the image quality and diagnostic accuracy. In this study, a novel two-stage locally adaptive edge preserving filter based on multi-level fuzzy reasoning (LAEPMLFR) concept is proposed as an image space denoising method for LDCT images. The first stage of structured pixel region employs multi-level fuzzy reasoning to handle uncertainty present in the local information introduced by noise. The second stage employs a Gaussian filter to smooth both structured and non-structured pixel region in order to retain the low frequency information of the noisy image. Comparing with traditional denoising methods, the proposed method demonstrated noticeable improvement on noise reduction while maintaining the image contrast and edge details of LDCT images.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com