A robust approach to detect video-based attacks to enhance security Online publication date: Tue, 05-Nov-2019
by Shefali Arora; M.P.S. Bhatia
International Journal of Innovative Computing and Applications (IJICA), Vol. 10, No. 3/4, 2019
Abstract: Face authentication has become widespread on smart devices and in various applications these days. Real time detection of human faces in video surveillance systems is challenging due to variations in expression and background conditions. Thus, precise detection of spoofed faces is important to make such security systems robust against potential attacks. Several deep learning-based techniques involving the use of convolutional neural networks have proven to be excellent in detection of spoofed faces. In this paper, we have proposed the combined use of spatial and temporal information from facial images using CNN and long short-term memory networks. We have tested the approach on Idiap Replay Attack benchmark and compared the results with the application of pre-trained models like InceptionV3, VGGNet and ResNet models to detect replay attacks during video surveillance. Our approach proves to be robust and more efficient for detection of security breaches in real time situations.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Innovative Computing and Applications (IJICA):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com