Heuristic rule-based process discovery approach from events data
by Hind R'bigui; Chiwoon Cho
International Journal of Technology, Policy and Management (IJTPM), Vol. 19, No. 4, 2019

Abstract: Knowledge management consists of transforming data into beneficial knowledge in a business environment. Today, large amounts of data related to the execution of business processes called event logs are stored in the information systems. Process mining enables knowledge management by extracting knowledge from these historical event logs. Most organisations seek to understand how their business processes are executed to improve them. Therefore, several process discovery techniques have been developed in the field of process mining. However, none of the existing algorithms can discover all types of process constructs that can exist in an event log in a restricted time. This paper proposes a new heuristic rule-based technique that is capable of constructing process models with standard constructs, short loops, invisible tasks, duplicate tasks, and non-free choice constructs. Artificial and real-life data have been used to evaluate the algorithm. The results demonstrate that the aforementioned characteristics can be discovered correctly.

Online publication date: Tue, 10-Dec-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Technology, Policy and Management (IJTPM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com