Morphological component analysis based on mixed dictionary for signal denoising of ground penetrating radar
by Jianhua Zhang; Haohao Zhang; Yang Li; Xueli Wu
International Journal of Simulation and Process Modelling (IJSPM), Vol. 14, No. 5, 2019

Abstract: Forward modelling is applied to simulate the ground penetrating radar (GPR) detection environment, and a modified morphological component analysis (MCA) algorithm is applied to GPR signal denoising. Finite-difference time-domain (FDTD) method is used to perform finite difference approximation to the space and time derivatives of Maxwell's equations. Under the forward simulation framework, the MCA algorithm applies a sparse dictionary to decompose the GPR signal. However, clutter is not represented as there is no corresponding sparse dictionary, the clutter is removed when the signal is reconstructed. The core of the MCA is to select a suitable dictionary. The combination of undecimated discrete wavelet transform (UDWT) dictionary and curvelet transform dictionary(CURVELET) is selected. The improved MCA algorithm is compared with singular value decomposition (SVD) and principal component analysis (PCA), to confirm the high performance of the proposed algorithm.

Online publication date: Sat, 14-Dec-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com