An empirical net asset value forecasting model based on optimised ANN using elephant herding strategy
by Sarbeswara Hota; Kuhoo; Debahuti Mishra; Srikanta Patnaik
International Journal of Management and Decision Making (IJMDM), Vol. 19, No. 1, 2020

Abstract: Net asset value (NAV) prediction of mutual funds is one of the promising tasks of financial time series data forecasting. It enables the investors to choose the desired mutual fund for investing. Artificial neural network (ANN) is well suited for NAV prediction as the NAV data are nonlinear in nature. This paper proposes the ANN model hybridised with elephant herding optimisation (EHO) algorithm to predict the NAV of different interval days ahead for two of the Indian mutual funds. The prediction performance of ANN-EHO model is compared with ANN, ANN-GA, ANN-PSO and ANN-DE. The results implicate that ANN-EHO model is superior to other four models.

Online publication date: Fri, 20-Dec-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Management and Decision Making (IJMDM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com