Multiscale interaction between energy and food quality in the super cold chain for sustainable agriculture Online publication date: Mon, 23-Dec-2019
by Yi-Sai Gao; Guan-Bang Wang; Ya-Ting Xiao; Jia-Qi Sun; Qiu-yun Zheng; Xin-Rong Zhang
International Journal of Global Warming (IJGW), Vol. 19, No. 4, 2019
Abstract: For the cold chain of fresh agricultural food, a good balance between energy and quality must be carefully considered. Most of previous researches focused on macroscale and mesoscale, while neglecting the significance of microscale. In the present study, the super cold chain is extended to multiscale studies on the interaction between energy and food quality by illustrating four representative cases. At microscale and mesoscale, such methods as X-ray computed tomography and stochastic reconstruction are adopted to analyse the multi-phase and multi-component porous structure. At macroscale, the dissipation factor is applied to evaluate the heterogeneity and optimise the system. Besides, representative volume element (RVE) method is a bridge between different scales, and heat and mass transport are solved simultaneously. Therefore, based on the special focus on sustainable agriculture, super cold chain has the potential to achieve less food quality loss and lower energy consumption, thereby decreasing effects on global warming.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com