Fractal description and adsorption-desorption behaviour of coke treated by benzene pyrolysis carbons Online publication date: Tue, 14-Jan-2020
by Zezhi Zhang
International Journal of Nanomanufacturing (IJNM), Vol. 16, No. 1, 2020
Abstract: For explaining why benzene pyrolysis carbons could inhibit coke deterioration in blast furnace, the adsorption-desorption data of coke sample treated by benzene pyrolysis carbons were obtained to establish adsorption-desorption isotherms and to fit fractal description model with Frenkel-Halsey-Hill equation. The SEM photographs of coke revealed that the pores of the infiltrated coke were almost filled with pyrolysis carbon particles. The fitted curves showed that the types of isotherms were similar to 'type II' of IUPAC classification, and the hysteresis loops belonged to type H3 which represents a typical multilayer adsorption. Model tests indicated that the pore structure of the coke samples have obvious fractal feature and the fractal dimensions of coke sample treated by benzene pyrolysis carbons were smaller than that of original coke sample. So, it explained that benzene pyrolysis carbons can effectively inhibit coke deterioration by infiltrating into the pore structure of coke and reducing pore roughness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com