Real time noisy dataset implementation of optical character identification using CNN
by R. Anand; T. Shanthi; R.S. Sabeenian; S. Veni
International Journal of Intelligent Enterprise (IJIE), Vol. 7, No. 1/2/3, 2020

Abstract: Optical character recognition (OCR) is one of the major research problem in real time applications and it is used to recognise all the characters in an image. As English is a universal language, character recognition in English is a challenging task. Deep learning approach is one of the solution for the recognition of optical characters. Aim of this research work is to perform character recognition using convolutional neural network with LeNET architecture. Dataset used in this work is scanned passport dataset for generating all the characters and digits using tesseract. The dataset has training set of 60,795 and testing set of 7,767. Total samples used are 68,562 which is separated by 62 labels. Till now there is no research on predicting all 52 characters and ten digits. The algorithm used in this work is based on deep learning with appropriate some layer which shows significant improvement in accuracy and reduced the error rate. The developed model was experimented with test dataset for prediction and can produce 93.4% accuracy on training, and 86.5% accuracy on the test dataset.

Online publication date: Mon, 27-Jan-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Enterprise (IJIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com