Numerical methods for first order uncertain stochastic differential equations Online publication date: Tue, 28-Jan-2020
by Justin Chirima; Eriyoti Chikodza; Senelani Dorothy Hove-Musekwa
International Journal of Mathematics in Operational Research (IJMOR), Vol. 16, No. 1, 2020
Abstract: Uncertain stochastic calculus is a relatively new sub discipline of mathematics. This branch of mathematical sciences seeks to develop models that capture aleatory and epistemic features of generic uncertainty in dynamical systems. The growth of uncertain stochastic theory has given birth to a novel class of differential equations called uncertain stochastic differential equations (USDEs). Exact and analytic solutions to this family of differential equations are not always available. In such cases, numerical analysis provides a gateway to approximate solutions. This paper examines a Runge-Kutta method for solving USDEs. Before examining and applying the Runge-Kutta method, the paper states and proves the existence and uniqueness theorem. The Runge-Kutta method is then applied to solve an American call option pricing problem. This numerical algorithm proves to be effective and efficient because it produces almost the same results as compared to Chen's analytic formula and the classical Black-Scholes model.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematics in Operational Research (IJMOR):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com