A comparative study of meta-heuristic optimisation techniques for prioritisation of risks in agile software development
by B. Prakash; V. Viswanathan
International Journal of Computer Applications in Technology (IJCAT), Vol. 62, No. 2, 2020

Abstract: Risks are in general termed as threats or uncertainties that influence the project performance and its outcomes to the greater extent. To ensure software quality and project success, every organisation should enforce a proper mechanism to efficiently manage the risks irrespective of the development model they follow. Risk prioritisation is a most critical step in risk management process that helps the organisation to resolve the risks in shorter duration of time. In this paper, a comparative study about different meta-heuristic optimisation techniques for prioritising the risks in agile environments is presented. The five most effective meta-heuristic optimisation algorithms such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO), Grey Wolf Optimisation (GWO) and Analytical Hierarchy Process (AHP) are considered and the results are evaluated based on four key criterion attributes such as error rate, accuracy, reliability, and running time. The result proves that GWO outperforms other four meta-heuristic optimisation techniques for the prioritisation of risks in agile environment.

Online publication date: Tue, 28-Jan-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com