Urban emission inventory optimisation using sensor data, an urban air quality model and inversion techniques Online publication date: Wed, 05-Feb-2020
by David Carruthers; Amy Stidworthy; Daniel Clarke; Jo Dicks; Rod Jones; Ian Leslie; Olalekan A.M. Popoola; Martin Seaton
International Journal of Environment and Pollution (IJEP), Vol. 66, No. 4, 2019
Abstract: An optimisation scheme has been developed that applies a Bayesian inversion technique to a high resolution (street-level) atmospheric dispersion model to modify pollution emission rates based on sensor data. The scheme minimises a cost function using a non-negative least squares solver. For the required covariance matrices, assumptions are made regarding the magnitude of the uncertainties in source emissions and measurements and the correlation in uncertainties between different source emissions and different measurement sites. The scheme has been tested in an initial case study in Cambridge using monitored data from four reference monitors and 20 AQMesh sensor pods for the period 30 June 2016 to 30 September 2016. Hourly NOx concentrations from road sources modelled using ADMS-Urban and observed concentrations were processed using the optimisation scheme and the adjusted emissions were re-modelled. The optimisation scheme reduced average road emissions on average by 6.5% compared to the original estimates, changed the diurnal profile of emissions and improved model accuracy at four reference sites.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com