Managing uncertainty in ferry terminals: a machine learning approach Online publication date: Fri, 14-Feb-2020
by Iñigo L. Ansorena; César López Ansorena
International Journal of Business Information Systems (IJBIS), Vol. 33, No. 2, 2020
Abstract: Ferry service across the Gibraltar Strait usually faces with the congestion problem at ferry terminals. Recognising the need to manage this problem, port managers must be prepared in advance to reduce waiting times, give space in the car park, coordinate ferry departures, etc. With this aim, we propose a machine learning methodology based on a classification and regression tree (CART) model. Thus, by means of the CART model, port managers can predict (with a certain error) the number of vehicles (or passengers) that will use the ferry terminal in the future. The accurate prediction that the model provides is crucial not only for port managers, but also for ferry operators. Our CART gives the predicted value and the measure of the expected error. Both are presented in sunburst graphs.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Information Systems (IJBIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com