Smart learning using personalised recommendations in web-based learning systems using artificial bee colony algorithm to improve learning performance Online publication date: Sat, 22-Feb-2020
by Maganti Venkatesh; S. Sathyalakshmi
Electronic Government, an International Journal (EG), Vol. 16, No. 1/2, 2020
Abstract: Many of e-learning systems in their web-based courses do not have personalisation based on individual needs and their capabilities. Main challenging aspect of personalised delivery of e-learning is concerned with an adaptive course delivery along with content delivery. Personalised e-learning environment provide recommendations to learning community for supporting and also helping them go through the process of e-learning, as it plays a crucial role in promotion of smart learning in smart cities. In this work, a novel framework namely, personalised bee recommender for e-learning (PBReL) based on artificial bee colony (ABC) optimisation is proposed to build a structure of recommendation by using K-means clustering. Many other recommender system are available that made use of ABC to identify its optimal learning path. Experiments are carried out by using web links and contents of Moodle-based learning management system (LMS). Results show that the proposed framework obtains higher precision and coverage.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the Electronic Government, an International Journal (EG):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com