Forecasting power load curves from spatial and temporal mobile data
by Frederico Coelho; Murilo Menezes; Lourenço Ribeiro; André Barbosa; Vinicius Silva; Antônio P. Braga; Carlos Natalino; Paolo Monti
World Review of Science, Technology and Sustainable Development (WRSTSD), Vol. 16, No. 1, 2020

Abstract: This work aims at applying computational intelligence approaches to telecommunication data, in order to associate mobile data to energy consumption load curves. Clustering methods are applied in order to allow the telecommunication network to infer about its topology and consumption load forecasting. Through an extensive analysis of Telecom Italia dataset and power distribution lines data available for the city of Trento, it was possible to confirm the high correlation between them, mainly when voice data is considered. To a great extent, this correlation can be explained by the fact that cellular communication devices are physically present in the service area of the distribution lines and when people are communicating, they are also consuming energy. Based on the aforementioned dataset, load curves for the city of Trento were constructed having as inputs data from telecommunication transactions. Results show that it is possible to use the telecommunication load as the input to predict the energy load, with the proposed model performing better than the naive predictor in 82% of the tested distribution lines.

Online publication date: Thu, 05-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the World Review of Science, Technology and Sustainable Development (WRSTSD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com