Collaborative filtering-based recommendation system for big data
by Jian Shen; Tianqi Zhou; Lina Chen
International Journal of Computational Science and Engineering (IJCSE), Vol. 21, No. 2, 2020

Abstract: Collaborative filtering algorithm is widely used in the recommendation system of e-commerce website, which is based on the analysis of a large number of users' historical behaviour data, so as to explore the users' interest and recommend the appropriate products to users. In this paper, we focus on how to design a reliable and highly accurate algorithm for movie recommendation. It is worth noting that the algorithm is not limited to film recommendation, but can be applied in many other areas of e-commerce. In this paper, we use Java language to implement a movie recommendation system in Ubuntu system. Benefiting from the MapReduce framework and the recommendation algorithm based on items, the system can handle large datasets. The experimental results show that the system can achieve high efficiency and reliability in large datasets.

Online publication date: Wed, 11-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com