Injection water jet peening of carburised 18CrNiMo7-6 steel surfaces Online publication date: Mon, 16-Mar-2020
by Yongtao Ma; Lundun Zhang; Jiancheng Liu; Lanrong Liu
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 14, No. 1, 2020
Abstract: A compressive residual stress field (CRSF) can improve the fatigue life of machined parts. Injection water jet peening is a new way of inducing compressive residual stress in the surface layer. A carburised 18CrNiMo7-6 gear steel was tested using injection peening under different conditions. The main variables included pressure, nozzle velocity and stand-off distance. The surface hardness was improved up to 63.4 HRC from its original hardness of 56.3 HRC. The maximum residual stress reached −1,240 MPa at a depth of 150 μm. The results also showed that pressure has the most dominant effect on the CRSF. Metallographic photos showed that the grain size was refined in the subsurface layer, a phase change having occurred because of the peening. It was also found that the average surface roughness was inversely influenced by peening, suggesting a new role for water jets in the finishing process.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com