Numerical minimisation of abrasive-dust wear in internal combustion engines Online publication date: Mon, 16-Mar-2020
by Abdulaziz Alfadhli; Abdullah Alazemi; Emad Khorshid
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 14, No. 1, 2020
Abstract: This paper presents a mathematical model to predict the abrasive wear of piston ring and cylinder sleeve in internal combustion engines due to dust particles. A parametric study is conducted on different group factors such as the abrasive action of the medium, engine design parameters, and engine physio-mechanical properties of the materials. The model reveals that it accurately predicts the effect of numerous factors on the wear process for the piston ring and cylinder sleeve. The model capabilities are demonstrated by the impact of air filtration efficiency on the engine component wear rate. It is found that dust particle size and concentration have significant effects on piston ring and cylinder sleeve wear rates. The numerical results show that the wear rate of both the piston ring and cylinder sleeve can be reduced by 80% when the air filter efficiency is increased from 97.8% to 99.4%.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com