Rough center in a 3-dimensional Lotka-Volterra system
by Yusen Wu; Laigang Guo
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 10, No. 2, 2020

Abstract: This paper identifies rough center for a Lotka-Volterra system, a 3-dimensional quadratic polynomial differential system with four parameters h, n, λ, μ. The known work shows the appearance of four limit cycles, but centre condition is not determined. In this paper, we verify the existence of at least four limit cycles in the positive equilibrium due to Hopf bifurcation by computing normal forms. Furthermore, by applying algorithms of computational commutative algebra we find Darboux polynomial and give a centre manifold in closed form globally, showing that the positive equilibrium of centre-focus is actually a rough center on a centre manifold.

Online publication date: Wed, 25-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com