Brake blending and torque vectoring of road electric vehicles: a flexible approach based on smart torque allocation
by Luca Pugi; Tommaso Favilli; Lorenzo Berzi; Edoardo Locorotondo; Marco Pierini
International Journal of Electric and Hybrid Vehicles (IJEHV), Vol. 12, No. 2, 2020

Abstract: Application of regenerative braking on electric vehicles has a large impact on several aspects of design, implemented functionalities and overall performances of road vehicles. In particular, multi-quadrant capabilities and improved control performances of modern electric drives can be fully exploited to improve vehicle efficiency, stability and overall environmental impact. Conventional, mechanical friction brakes are currently devoted not only to stop the vehicle but also to the actuation of safety related mechatronics systems such as electronic braking distribution (EBD), AntiBlockierSystem (ABS) and electronic stability control/program (ESC/ESP). The result is an over-actuated system of electrical (electric motors) and mechanical actuators (friction brakes), whose mixed, blended application has to be carefully optimised. In this work a simplified approach is proposed in which concepts transferred from previous studies on high speed trains and autonomous vehicles are re-purposed and adapted in an innovative way to electric road vehicles.

Online publication date: Thu, 02-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electric and Hybrid Vehicles (IJEHV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com