A hybrid model collaborative movie recommendation system using K-means clustering with ant colony optimisation
by M. Sandeep Kumar; J. Prabhu
International Journal of Internet Technology and Secured Transactions (IJITST), Vol. 10, No. 3, 2020
Abstract: Movie recommendation system offers a mechanism to allocate the user to attain the famous film by getting an opinion from similar users or past rating by user. This produces recommender systems has a crucial part of website and e-commerce application. The primary objective of the system to prefer a recommender system by data clustering and computational intelligence. We proposed a hybrid model collaborative movie recommendation system that performs with a combination of K-means clustering with ant colony optimisation technique (ACO-KM) that has employed in movie dataset. The proposed system compared with existing works, and its efforts have been analysed. The evaluation process of movie recommendation system that offers improved result from ACO-KM collaborative movie recommender system based on precision, recall, mean square error (MSE), and accuracy. By comparison of speed (in seconds) of various approaches in Movielens dataset, our approach gives best result 42.24 compared with existing one 53.22. The outcome of this experiment from Movielens dataset that offers scalability and efficiency in a recommendation by decreasing cold start issues.
Online publication date: Mon, 04-May-2020
The full text of this article is only available to individual subscribers or to users at subscribing institutions.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Internet Technology and Secured Transactions (IJITST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com