Simulations of COVID-19 spread by spatial agent-based model and ordinary differential equations Online publication date: Fri, 15-May-2020
by Shan Bai
International Journal of Simulation and Process Modelling (IJSPM), Vol. 15, No. 3, 2020
Abstract: The COVID-19 outbreak is currently the biggest public health issue in the world. In this paper, the epidemic spread is modelled via two structurally different approaches, a system of first-order ordinary differential equations (ODEs) and spatial agent-based model (ABM). Specific intervention strategies are introduced and the effectiveness of the strategies can be assessed by comparing the results with/without these strategies. The simulation results are qualitatively affected by different parameter settings of the ODEs-based model; hence precision of input parameters characterising the spread is of great importance. The implementation of spatial ABM brings novel features to the epidemics modelling: new states being easily incorporated; the parameter illustrating the moving willingness of people; and sub-models for hospital beds to reflect demands of medical resources. Our results suggest that the flexible characteristics of ABM render it a useful addition to the tool set of epidemics simulation models so as to figure out new effective strategies.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com