The use of surface plasmon resonance band of green silver nanoparticles and conductometry for quantitative determination of minor concentrations of doxycycline hyclate and oxytetracycline HCl in pure and pharmaceutical dosage forms Online publication date: Thu, 02-Jul-2020
by Rania A. Sayed; Manal S. Elmasry; Wafaa S. Hassan; Magda Y. El-Mammli; Abdalla Shalaby
International Journal of Nanomanufacturing (IJNM), Vol. 16, No. 3, 2020
Abstract: Two novel and sensitive methods for quantitative determination of doxycycline hyclate and oxytetracycline HCl were developed. The first method (method A) is based on the reducing character of the cited drugs which causes chemical reduction of silver ions to silver nanoparticles (Ag-NPs) in the presence of polyvinyl pyrrolidone (PVP) as a stabilising agent producing surface plasmon resonance which has absorption peaks at 424 and 428 nm for doxycycline hyclate and oxytetracycline HCl, respectively. The nanoparticles were characterised by UV-VIS spectrophotometry and transmission electron microscopy (TEM). The plasmon absorbance of the Ag-NPs was used for the quantitative spectrophotometric determination of the cited drugs. The second method (method B) is a conductometric method which is based on the reaction of the cited drugs with phosphotungstic acid to form ion associates in aqueous system. Validation of the proposed methods was carried out.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com