Implementation of an efficient FPGA architecture for capsule endoscopy processor core using hyper analytic wavelet-based image compression technique Online publication date: Thu, 02-Jul-2020
by N. Abdul Jaleel; P. Vijaya Kumar
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 12, No. 3, 2020
Abstract: To receive images of human intestine for medical diagnostics, wireless capsule endoscopy (WCE) is a state-of-the-art technology. This paper proposes implementation of efficient FPGA architecture for capsule endoscopy processor core. The main part of this processor is image compression, for which we proposed an algorithm called as hyper analytic wavelet transform (HWT). The hyper analytic wavelet transform (HWT) is quasi shift-invariant; it has a good directional selectivity and a reduced degree of redundancy. Huffman coding also used to reduce the amount of bits required to represent a string of symbols. This paper also provided forward error correction (FEC) scheme based on low density parity check codes (LDPC) to reduce bit error rate (BER) of the transmitted data. Compared to the similar existing works this paper proposed an efficient architecture.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com