Predicting students' academic performance: Levy search of cuckoo-based hybrid classification
by Deepali R. Vora; R. Kamatchi
International Journal of Grid and Utility Computing (IJGUC), Vol. 11, No. 4, 2020

Abstract: Educational Data Mining (EDM) exists as a novel trend in the Knowledge Discovery in Databases (KDD) and Data Mining (DM) field that concerns in mining valuable patterns and finding out practical knowledge from the educational systems. However, evaluating the educational performance of students is challenging as their academic performance pivots on varied constraints. Hence, this paper intends to predict the educational performance of students based on socio-demographic information. To attain this, performance prediction architecture is introduced with two modules. One module is for handling the big data via MapReduce (MR) framework, whereas the second module is an intelligent module that predicts the performance of the students using intelligent data processing stages. Here, the hybridisation of classifiers like Support Vector Machine (SVM) and Deep Belief Network (DBN) is adopted to get better results. In DBN, Levy Search of Cuckoo (LC) algorithm is adopted for weight computation. Hence, the proposed prediction model SVM-LCDBN is proposed that makes deep connection with the hybrid classifier to attain more accurate output. Moreover, the adopted scheme is compared with conventional algorithms, and the results are attained.

Online publication date: Tue, 14-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Grid and Utility Computing (IJGUC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com