Advanced exergy analysis of a jet ejector refrigeration cycle used to cool down the intake air in an internal combustion engine
by José Galindo; Vicente Dolz; Benjamín Pla; Alberto Ponce-Mora
International Journal of Exergy (IJEX), Vol. 32, No. 4, 2020

Abstract: This paper describes a jet ejection cycle coupled to a 1.5 L diesel engine to reduce the intake air temperature using the waste heat of the exhaust gases. This cycle is evaluated by means of conventional and advanced exergy analysis. The conventional analysis allows to determine the origin and magnitude of the irreversibilities, whereas the advanced analysis sheds light on the mutual interdependencies between components and the real improvement potential considering technological limitations. From the conventional exergy analysis it is inferred that more than a half of exergy destruction is due to generator followed by ejector (one third part) and condenser. However, the advanced exergy analysis suggests that the ejector plays a prominent role because the avoidable endogenous part corresponds to 42% of total exergy destruction in that component whereas the avoidable part of exergy destruction in the generator is mostly exogenous (83%). Hence, exergy destruction could be significantly reduced if improvement efforts are focused on the ejector instead of other components like the generator.

Online publication date: Mon, 10-Aug-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com