A new replica placement strategy based on multi-objective optimisation for HDFS Online publication date: Fri, 14-Aug-2020
by Yangyang Li; Mengzhuo Tian; Yang Wang; Qingfu Zhang; Dhish Kumar Saxena; Licheng Jiao
International Journal of Bio-Inspired Computation (IJBIC), Vol. 16, No. 1, 2020
Abstract: Distributed storage systems like the Hadoop distributed file system (HDFS) constitute the core infrastructure of cloud platforms which are well poised to deal with big-data. An optimised HDFS is critical for effective data management in terms of reduced file service time and access latency, improved file availability and system load balancing. Recognising that the file-replication strategy is key to an optimised HDFS, this paper focuses on the file-replica placement strategy while simultaneously considering storage and network load. Firstly, the conflicting relationship between storage and network load is analysed and a bi-objective optimisation model is built, following which a multi-objective optimisation memetic algorithm based on decomposition (MOMAD) and its improved version are used. Compared to the default strategy in HDFS, the file-replica placement strategies based on multi-objective optimisation provide more diverse solutions. And competitive performance could be obtained by the proposed algorithm.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com