Mechanistic study and performance evaluation of steam assisted gravity drainage using direct visualisation of pore-level experiments Online publication date: Wed, 09-Sep-2020
by Omid Mohammadzadeh; Nima Rezaei; Ioannis Chatzis
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 25, No. 2, 2020
Abstract: In this paper, insights into the pore-scale physics of SAGD process are presented through analysis of a systematic series of SAGD visualisation experiments, conducted using optical imaging technique and glass-etched micromodels of capillary networks. The steam chamber propagation was found to be influenced by the randomly-distributed fingering of the invading steam front near the mobile oil-steam chamber interface. The steam fingering was extensive during the vertical growth of the steam chamber where the steam buoyant front was protruding through the pores containing a continuum of oil. The steam fingering phenomenon was also observed during the outward propagation of the steam chamber near its lateral wings, but to a lesser extent. The rate of pore-scale horizontal interface advancement was constant at each elevation along the height of the micromodels. The average pore-level SAGD sweep rates as well as the net cumulative steam to oil ratio were correlated using an analytical model. [Received: March 15, 2018; Accepted: February 11, 2019]
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com