Development of hybrid model for improving the prediction of dengue-human protein interaction for anti-viral drug discovery
by R. Revathy; A. Jainul Fathima; S. Balamurali; G. Murugaboopathi
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 13, No. 2/3/4, 2020

Abstract: Dengue fever is the most common viral disease caused by mosquitoes. Due to the lack of curable drugs, there is an urgent need to develop anti-viral against dengue disease. Several innovative computational approaches were incorporated for the discovery of a new lead molecule that acts on the dengue virus target. The target can be a viral or host protein. Predicting the type of interaction between the virus and human protein will give better knowledge in developing therapeutics against the dengue disease. The main objective of this study is to propose a hybrid model which combines feed forward back propagation neural network (FFBPNN) with firefly algorithm to predict the dengue-human protein interaction. The novelty in this study is to focus on optimising the weights and bias of the artificial neural network to improve the efficiency of algorithm. While comparing with existing C4.5 and FFBPNN classification algorithms, the results show that the proposed hybrid method fitted the interaction data efficiently and predicts the interaction type which leads to the development of anti-viral drugs. The accuracy of the classification gained by C4.5 is 88%, FFBPNN is 97% and hybrid FFBPNN is 99%.

Online publication date: Wed, 09-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com