Kinematic analysis of a lightweight periodic dielectric structure of pearls for RF coaxial power cables for space applications
by Gerald Kress; Holger Karstensen; Michael Mattes; David Raboso
International Journal of Space Science and Engineering (IJSPACESE), Vol. 6, No. 1, 2020

Abstract: The desire to reduce the mass per unit length and to increase phase stability of coaxial radio-frequency (RF) power cables for space application motivates a new design idea, namely to replace solid dielectric with a periodic chain of hollow pearls. The design of the dielectric pearls must allow for bending flexibility of the cable even if they are made from a stiff material such as silicon glass. An important requirement of RF power cables for space applications is their phase stability, which is influenced by the material-dielectric-constant tolerance over a large temperature range as well as by changes in geometry. This paper presents an original closed-form model based on rigid-body motion to predict the kinematic response of dielectric pearls to the bending of the cable. Particularly, the model maps the eccentricity of the inner and outer conductors with respect to each other and the axial strain of the bent cable along its centreline. The model results indicate that mass reductions of the periodic hollow-pearl design over conventional solid PTFE dielectrics are significant.

Online publication date: Tue, 22-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Space Science and Engineering (IJSPACESE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com