A CFD study on the effect of compression ratio on combustion characteristics and emissions in a spark-ignition engine Online publication date: Tue, 29-Sep-2020
by Sachin Kumar Gupta; Mayank Mittal
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 20, No. 5, 2020
Abstract: The variable compression ratio is a viable technology to improve engine performance and to reduce greenhouse gas emissions. In the present study, numerical simulations were performed to quantify the effect of compression ratio (CR) on the characteristics of a spark-ignition (SI) engine. The simulations were carried out using Converge CFD with detailed chemical kinetics. The validation study for gasoline-driven SI engine, having bowl-in-piston and flat head type configuration, with CR of 8.5:1 showed that the numerical framework was accurate enough to predict the combustion characteristics of the engine. After verifying the model, a parametric study was conducted at different spark timings and CRs. Results showed that the indicated thermal efficiency increased by 3.4% and emission levels of carbon dioxide and carbon monoxide decreased by 11.8% and 8.1% when CR was increased from 8.5:1 to 12:1, respectively. Also, the flame velocity was found to be increased with the increase in CR.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com