Lung cancer classification using feed forward back propagation neural network for CT images
by Pankaj Nanglia; Aparna N. Mahajan; Davinder S. Rathee; Sumit Kumar
International Journal of Medical Engineering and Informatics (IJMEI), Vol. 12, No. 5, 2020

Abstract: Manual computation of lung cancer is a time taking process. In the medical industry, software aided detection (SAD) aims to optimise the classification process. This paper proposes lung cancer detection for computed tomography (CT) images. It uses speed up robust feature (SURF) for feature extraction, genetic algorithm (GA) for feature optimisation and feed forward back propagation (FFBP), neural network (NN) for classification. The training mechanism utilises 200 cancerous images and the proposed method results in 96% classification accuracy and 94.7% sensitivity. This paper also discusses the possible future modifications in the presented work.

Online publication date: Wed, 30-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Medical Engineering and Informatics (IJMEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com