Daily discharge simulation: combining semi-distributed GIS-based and artificial intelligence models Online publication date: Wed, 30-Sep-2020
by Ali H. Ahmed Suliman; Ayob Katimon; Intan Zaurah Mat Darus
International Journal of Hydrology Science and Technology (IJHST), Vol. 10, No. 5, 2020
Abstract: Developing highly accurate semi-distributed rainfall runoff models are still a big challenge in streamflow simulation. In this paper, a new technique using ANN to improve the accuracy of TOPMODEL is presented. TOPMODEL contains three sub-models, which are root storage, gravity storage and saturated storage. The proposed scheme is to replace one of the sub-models by artificial neural networks (ANN) model. A medium catchment located in tropical Malaysia known as Rantau Panjang catchment (RPC) is used. Two years, 1998-1999, are used for calibration, and 2000-2001 are used for validation process using daily data sets. Model results are evaluated by Nash-Sutcliffe model (NS), relative volume error (RVE) and correlation coefficient (CoC) which have been improved from 0.63 to 0.86, 0.92 to 0.93 and 40.91 to 14.12 respectively demonstrate the ability of ANN to improve the accuracy of TOPMODEL. It is concluded that the scheme can improve performance in terms of streamflow simulation.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydrology Science and Technology (IJHST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com