Design of BTI sensor-based improved SRAM for mobile computing applications
by Kumar Neeraj; Jitendra Kumar Das; Hari Shanker Srivastava
International Journal of Intelligent Systems Technologies and Applications (IJISTA), Vol. 19, No. 4, 2020

Abstract: Reliability of electronic components is the major concern as the CMOS technology is scaled down especially in mobile computing applications of MPEG video processor design. Scaling CMOS technology leads to increase in power density per unit area in an exponentially manner. BTI is one of the serious problems in SRAM cell design at low technology level. In this paper, a detection technique is proposed which detects the BTI effect on SRAM using SNM calculation. The proposed prototype is used to detect faults during read and write cycle of aged SRAM, which affects the reliability of the circuit. The diagnostics of fault is done by detection of BTI effect on SRAM using static noise margin (SNM) calculation. The circuit design on CMOS technology is carried out using HSPICE simulator in cadence.

Online publication date: Thu, 01-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Systems Technologies and Applications (IJISTA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com