Abnormal network data mining model based on deep training learning Online publication date: Wed, 14-Oct-2020
by Xiaoling Jiang; Hui Zhang; Jiaming Xu; Weicheng Wu; Xingyong Xie
International Journal of Internet Protocol Technology (IJIPT), Vol. 13, No. 4, 2020
Abstract: Aiming at the problems of low detection efficiency and poor clustering effect in traditional abnormal network data mining process, an abnormal data mining model based on kernel extreme learning machine and particle swarm optimisation is proposed. The enhanced local linear embedding algorithm is used to extract the features of abnormal network data, and the required feature dimensions are extracted repeatedly to obtain the corresponding features of target network data. K-means algorithm is introduced to cluster the target network data to increase the identification of data mining. By improving the particle swarm optimisation algorithm to optimise the parameters of the kernel limit learning machine, the final abnormal data mining results are the best. The experimental results show that the proposed method has high detection efficiency and good clustering effect, which fully proves the superiority of the proposed method and lays a foundation for the progress of abnormal network data mining technology.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Internet Protocol Technology (IJIPT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com