Submicron centroid position measurement method of screw connected structure under temperature load Online publication date: Mon, 19-Oct-2020
by Xiao Chen; Muzheng Xiao; Zifu Wang; Zhijing Zhang; Xin Jin
International Journal of Nanomanufacturing (IJNM), Vol. 16, No. 4, 2020
Abstract: This paper presents a submicron centroid position measurement method. Two laser displacement sensors are placed in the two ends of a screw connected structure for a real-time measurement. The entire measuring device is placed in a temperature controllable environment to measure the position change of the screw connected structure while temperature load is applied. The centroid position change of screw connected structure is calculated from the measured data. Uncertainty of the measurement method is analysed and a measurement experiment is carried out on the design structure. Under the action of a pre-tightening force about 400 N and a temperature change of 40°C, the maximum centroid position change of the structure is 7.46 μm. Finally, simulation based on surface form error of the measured structure is carried out to confirm that the measurement method proposed in this paper is effective.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com